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Children’s Pronoun Case Error

English speaking children make pronoun case errors:

• Pronoun case errors usually occur in children at the age of 2 to 4.
• Most two common types:

• Accusative case as Subject:

(1) * Me bite. (Abe, 1;9)

• Nominative case as Object:

(2) * When me see he again? (Eve, 2;0)

• Pronoun case errors have been considered as frequent,
systematic and characteristic mistakes.
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Why Children make Pronoun Case Errors

ATOM (Agreement/Tense Omission Model)
Wexler (1994); Wexler et al. (1998)

Paradigm building Model
Rispoli (1994, 1998, 1999, 2005)

Input Driven Model
Theakston et al. (2001, 2002, 2004)
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Basic Syntactic Structure of the Case Error

[CP...[IP(tense and agreement)...[VP...]]]
CP

...

IP

...

VP
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ATOM Agreement/Tense Omission Model

Explanation
Agreement is manifested on use of Nominative case. When children
fail to check agreement and/or tense, they produce errors:

• *Mummy do it.
• *Me do it.

Prediction
Accusative cases are more likely to occur with infinite verbs.

• *Her want cookie » *Her wants cookie.
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Paradigm Building Model

Explanation
case, person and number form a 3x3 paradigm for all nouns. Children
have difficulties access to all the pronouns in the paradigm.

Prediction
Children will make more errors on the pronouns the use more
frequently. Error rate is also related in their use of finiteness
structures.
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Input Driven Analysis

Explanation
Children learn language largely from input. Not only frequency of the
pronouns but also sequences of word could be play a role in the
errors.

Prediction
If the children hear "Acc + V" ("Let me do that.") and "Nom + V" ("I do
that everyday.") more often, they are more likely to make errors,
probably on the same verb too.
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Some Questions

• Which explanation is the most appropriate?
• What is the average error rate for this frequent and

characteristic error?
• What kinds of invididual differences are there?
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Data and Corpora

Data1 Selection Criteria:

• North American English
• Files are in xml form that has been tagged on the %mor tier and

%gra tier
• Pronoun rate (Cased Pronouns/Total words) > 5% in each file

1All data are from CHILDES (MacWhinney, 2014)
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Data and Corpora

This study included 22 children with longitudinal data and 173
children with cross-sectional data.

Corpora Child Age Corpora Child Age
Bloom et al. (1974) Peter 1;9-3;2 Suppes (1974) Nina 2;0-3;4
Braunwald (1971) Laura 1;5-4;0 Kuczaj (1978) Abe 2;5-4;0

Brown (1973)
Adam 2;3-4;0 Demetras (1986) Trevor 2;1-4;0
Eve 1;6-2;3

Weist et al. (2009)

Ben 2;4-3;4
Sarah 2;3-4;0 Emily 2;6-3;4

Demetras (1989) Jimmy 2;2-2;10 Emma 2;7-3;9
Clark (1978) Shem 2;3-3;2 Jilian 2;1-2;10
Sachs (1983) Naomi 1;3-4;9 Matt 2;5-5;0

MacWhinney (2014) Ross 1;4-5;0 Roman 2;3-4;0

Post (1993)
She 1;8-2;5 Snow (1990) Nathaniel 3;1-3;3
Tow 1;9-2;5 Hayes and Ahrens (1988) Geraldine 1;6-2;2
No. Mean Age No. Mean Age

Bates et al. (1991) 11 2;4 Bohannon III (1977) 2 3;6
Gleason (1980) 19 4;8 Snow et al. (1995) 79 3;11

Snow (1989) 25 2;8 Valian (1991) 17 2;5
Van Kleeck (1980) 19 3;9 9
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Data Collection

For each child:

General Data
Age, MLU, case errors

Data to ATOM
total number of verbs, past tense, perfective, and infinite forms

Data for Input Driven Hypothesis
Parent’s: total number of words, pronouns, cased pronouns, verbs,
past tense verbs, perfective, infinite forms

Data for Paradigm Building Model
Child’s: total number of words, pronouns, cased pronouns, each
pronoun

All the data are generated automatically using nltk python
package
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Automatic Data Generalization

nltk package basic

import nltk
from nltk.corpus.reader import CHILDESCorpusReader
valian = CHILDESCorpusReader(’corpora/childes/data-xml/Eng-USA-MOR/Valian/.*.xml’)
valian.age(’Valian/01a.xml’,month=True)
[25]
valian.MLU(’Valian/01a.xml’)
[2.35746606334..]
len(valian.words(’Valian/01a.xml’,speaker=’CHI’))
[571]
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Automatic Data Generalization

Case Errors
By searching %gra tier1, when a nominative pronoun is tagged as OBJ
or an accusative pronoun is tagged as SUBJ, then it counted as an
error.

Example
4297 *CHI: when me <see Fra> [//] see he again ?
4298 %mor: conj|when pro:obj|me v|see pro:sub|he
adv|again ? 4299 %gra: 1|3|LINK 2|3|SUBJ 3|0|ROOT 4|3|OBJ
5|4|JCT 6|3|PUNCT
(Brown/Eve/020100.xml)
1The reliability of this automated morphosyntactic annotation system has been

reported to have high-level accuracy, that the precision for SUBJ is 95.8% and for OBJ
is 94.1% (Sagae et al., 2010)
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Data Summary

Longitudinal pronouns cased pronouns errors error rate mean error rate per child mean max error rate

62538 41581 224 0.54% 1.32% 9.79%

Cross-sectional pronouns cased pronouns errors error rate mean error rate per child mean max error rate

13286 8932 75 0.84% 0.75% 11.21%

The error rate for children is really small.
Pronoun case errors are rare in children’s utterances.
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Data Summary

Name MLU words pronouns cased pronouns errors error-rate age for Max error

Abe 7.6 158538 21754 13404 47 2.2%(13.6%) 3;1
Adam 5.23 145563 19883 11924 82 1%(11.4%) 2;11
Ben 5.92 13730 1459 1107 19 3.14%(13.79%) 2;8
Emily 6.52 32325 4267 2894 14 0.82%(2.27% 2;11
Emma 5.28 26829 3104 2012 3 0.43%(3.85%) 2;8
Eve 4.34 21123 2967 1759 11 1.59%(2.52%) 2;1
Geraldine 3.74 3294 407 288 0 0.00%
Nathaniel 5.39 5220 531 375 0 0%
Nina 4.38 87938 9027 6505 100 4.91%(32.22%) 2;6
Naomi 3.70 32325 3871 2440 22 2.07%(21.69%) 2;1
Roman 6.72 47943 5264 3462 10 0.39%(2.9%) 2;6
Sarah 3.96 95969 12418 8142 37 1.64%(10.3%) 2;9
She 3.04 6768 665 434 9 2.94%(15.8%) 1;9
Tow 7.56 158538 21754 13404 47 2.23%(13.6%) 3;1
Jillian 4.87 20492 2138 1578 2 0.11%(0.39% ) 2;5
Jimmy 4.45 17859 1852 1309 11 0.82%(1.56%) 2;7
laura 3.82 64469 7689 5259 28 0.52%(2.75%) 3;0
Matt 6.47 43989 5634 3672 23 0.76% (7.95%) 2;5

Mean Age MLU words pronouns cased pronouns errors error-rate Mean Age for Max error

3;3 3.66 97907 13286 8932 75 0.8% (24.4%) 3;10
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Results

Correlation between Error count/rate vs Age and MLU:

• There is no unified correlational relationship among all children.
• Age and Errors are moderately to slightly negatively correlated:

Abe(-.52**), Nina(-.63**), Eve(-.29*)
• Children whose age and errors are not correlated: Roman(.07),

Sarah(-.02)
• Children whose age and errors are positively correlated: Jimmy

(0.46*)

• Errors and MLU positively correlated: Eve(.41*), Emily(.34)
• Errors and MLU not correlated: Sarah (.09), Jillian (.07)
• Errors and MLU negatively correlated: Nina (-.55**), Matt (-.40**)

Similar unified pattern also found in other variables (including verbs,
children’s use of pronouns, parent’s input, e.t.c)
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Conclusion and Discussion

Conclusion

• Children’s pronoun case error is surprisingly low and not frequent.
• Some children don’t make pronoun case errors at all.
• For those who make pronoun case errors, there’s such high

individual differences that one single theory might fail to account
for all

Discussion

• Children’s learning on abstract pronoun case is quite effective.
• We’ve been focusing on why they made errors, instead we never

attempt to explain how they learn the cases.
• What is the learning mechanism?
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Background

Distributional cues in pronoun case errors
Tomasello (2000, 2009) proposed that the frame structure the
children are being exposed to might mislead their interpretation of the
correct use of certain case. For example, they may derive Me do it.
from Let me do it.

Distributional Cue in word category learning
Children might use bigram (aX,Xb) or trigram(aXb) frame to infer the
grammatical category of word X. (Mintz, 2003; Clair et al., 2010) have
built computational models on the distributional patterns of parents’
input and showed that frequent frames are effective and efficient
source of information for categorizing words.
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Data and Corpora

Followed procedures in Clair et al. (2010)
Corpora Analyzed:
Peter, Nina, Eve, Naomi
Data Collection

• Get bigrams and trigrams containing pronouns
• Devide the bigrams and trigrams into aX, Xb and aXb frames

e.g. (’I’, "don’t") ("want","me") (’want’, ’me’, ’to’)
• label the pronoun as NOM or ACC
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Analysis

Uniqueness
Basic frequency accounts to see how many of the frame is unique in
NOM or ACC case.

Feedforward Neural Network
With one 100-units hidden layer feedforward neural network

Decision Tree
Term Frequency-Inverse Document Frequency (TD-IDF) Vectorized
Trained on Naive Bayesian and Random Forrest
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Evaluation

Intrinsic
Train on Parents’ utterances (80%)
Test on Parents’ utterances (20%)

Extrinsic
Train on Parents’ utterances
Test on Children’s utterances
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Results

Uniqueness

Child Frame No.Token No.Type NOM Token NOM Type ACC Token ACC Type

Peter
aX 649 254 0.66 0.57 0.95 0.67
Xb 649 312 0.84 0.61 0.64 0.60

Naomi
aX 926 205 0.57 0.53 0.95 0.63
Xb 926 288 0.83 0.53 0.72 0.53

Eve
aX 1221 206 0.52 0.5 0.88 0.61
Xb 1217 325 0.77 0.55 0.57 0.6

Nina
aX 7778 500 0.34 0.44 0.70 0.48
Xb 7766 1094 0.49 0.40 0.38 0.42
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Results

Evaluation

Child Frame
Feedforward NN Naive Bayesian Random Forest

Intrinsic Extrinsic Intrinsic Extrinsic Intrinsic Extrinsic

Peter
aX 0.7025 0.7794 0.86503 0.8965 0.9018 0.90184
Xb 0.6854 0.7549 0.8733 0.8947 0.9354 0.9287

aXb 0.7633 0.7820 0.8159 0.7826 0.82822 0.8349

Naomi
aX 0.7635 0.87764 0.88235 0.88234 0.92213 0.920703
Xb 0.7248 0.89558 0.8916 0.879 0.91388 0.913168

aXb 0.8023 0.86437 0.87616 0.87925 0,874 0,88589

Eve
aX 0.89714 0.909217 0.96338 0.96198 0.935193 0.935193
Xb 0.80857 0.877094 0.90160 0.897025 0.88363 0.88789

aXb 0.89428 0.76821 0.86956 0.867276 0.90160 0.90255

Nina
aX 0.973 0.8919 0.97079 0.97188 0.9022 0.8903
Xb 0.88321 0.86552 0.8868 0.88499 0.88363 0.887890

aXb 0.96629 0.838 0.91639 0.9142 0.84024 0.836419
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Conclusion and Discussion

Conclusion

• Distributional Cues are effective and informative enough for to
decide case

• Even with small sample size, the aX, Xb and aXb frames are
powerful enough to generate results better than chance and
better than frequency count

Discussion

• How to interpret the extrinsic evaluation? What does it mean
when it is higher than the intrinsic evaluation?

• How to relate this result to real life learning?
• How to model developmental pattern and errors?
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